Skalierung von industrieller Al für Digital Manufacturing

Prof. Dr. Michael Heiss, Siemens AG Österreich

DI Roland Laucher, Siemens Digital Industries Software Austria & Switzerland

With an excellent PhD student and three years of time you can solve almost every challenge

...but how to scale?

Your examples of scaling Al applications

Image processing:

license plate recognition system

→ Austria: W 66337 F

Scaling parameters

- Engineering: zero
- Customization: zero
- Applications domains: many E.g. parking, toll, speed...
- SaaS offerings and complete solutions with camera
- Error rate close to zero
- If ticket is issued due to wrong detection – no safety issue: human as backup

SIEMENS

Does your Al Usecase have similar scaling properties?

Time-Series Models ⊗

Image-Recognition Models

Large Language Models ©?

Scaling Strategies

2 Examples

Large Language Models (LLMs): a genius scaling approach for hyperscalers but the "last-mile-problem" remains in the industrial context

Hyperscalers provide general purpose LLMs

Al Solution Providers
(e.g. Siemens)
provide finetuned²⁾
LLMs and agents

Manufacturer provide their domain knowledge (RAG¹⁾)

Applicable as **copilots** for general language tasks incl.programming

Perfect scaling parameters:

- · Everybody can use it
- Set-up costs → 0
- Time-to-first-benefit: 30s
- Human-in-the-loop

Model training costs: G€

Applicable as **copilots** for the products of this company

Good scaling parameters:

- · Customers can us it
- Set-up costs → 0
- Time-to-first-benefit: 30s
- Human-in-the-loop

Model training costs: M€

Applicable as **copilots** in their domain for design/engineering production/operation...

Scaling parameters:

- Can used it in different factories
- Human-in-the-loop

Augmentation costs: k€

simplified

Two scaling strategies for industrial AI (time-series...): short term and long term

Blueprints

Already available e.g.: Siemens with Amazon on AWS IDF¹⁾

Industrial Foundation Model "Recharge Europe"

Work in progress

Industry data and context

1 Scaling Strategies

Examples

Benefits of AI in Digital Manufacturing

VIRTUAL
CONCEPT & ENGINEERING

PRODUCTION DEVELOPMENT

PHYSICAL MANUFACTURING & OPERATIONS

Engineering *productivity*

Reduce expertise and time required for manufacturing engineering, planning and development via Co-Pilots: Develop production programs with minimal expert Industrial coding knowledge.

Reduce extensive training

Minimize button clicks

Generate, minimize need for code expertise

Optimized production

Reduce downtime and increase productivity using advanced prediction capabilities

Accelerate troubleshooting and optimized production configuration. Take proactive and corrective action for quality:

Solve complex production problems faster

Predict quality defects

Rework and resources optimization

Al in Siemens Digital Manufacturing Portfolio

PROCESS ENGINEERING

Quality planning

Supply chain / logistics planning

VIRTUAL CONCEPT & ENGINEERING

PRODUCTION DEVELOPMENT

PHYSICAL
MANUFACTURING & OPERATIONS

MANUFACTURING BOM

SERVICE BOM

Available Al capabilities

Innovation Roadmap

SIEMENS

Tecnomatix Process Simulate Copilot

Challenge

- Optimized Efficiency: Faster, more accurate troubleshooting in manufacturing.
- Simplified Analysis: Easier simulation study and data evaluation.

Solution

Leveraging Generative AI (LLM), it analyses simulation data to provide insights, streamline troubleshooting, and suggest optimizations.

Benefit

- Enhanced Efficiency: Boosts productivity with quick, data-driven insights.
- Optimized Operations: Identifies and resolves issues for better performance.

Preview

Tecnomatix Process Simulate Collaborate Ergonomics

Challenge

 Accurate 3D posture modelling is vital for valid ergonomic analyses but can be time-intensive & requires expertise.

Solution

 An Al-based tool to automatically generate 3d human poses from a basic photograph

Benefit

- Advanced posture modelling with minimal time and effort.
- Instant access to detailed results online.

Link to Learn more

Teamcenter Copilot

Challenge

- Searching for information
- Analyzing dense documents

Solution

- Teamcenter Copilot brings document intelligence, BOM exploration, and conversational search into a single, intuitive interface
- Fast, intelligent, context-aware assistance
- Secure, integrated, and grounded in your data

Benefit

Improve engineering productivity

Contact

Prof. DI. Dr. Michael Heiss Siemens AG Österreich Siemensstraße 90 A-1210 Wien | Austria

www.siemens.at/innovation-labs michael.heiss@siemens.com +43 664 8855 1526

http://www.linkedin.com/in/michaelheiss

DI. Roland Laucher Portfolio Executive Digital Manufacturing Siemens Digital Industries Software Austria & Switzerland

www.sw.siemens.com roland.laucher@siemens.com +43 664 8863 4776

https://www.linkedin.com/in/roland-laucher/

