Digital Product Passport

From identification of the relevant data to implementation and integration of the required technologies

2024

We are developers of digital futures

Tietoevry Create Global digital engineering business

> **Tietoevry Banking** Financial services software business with global reach

Tietoevry Care Nordic healthcare and social care software

Tietoevry Industry Portfolio of niche software and data platforms

Tietoevry Tech Services IT modernization for Nordic societies and businesses

More than 10 000 customers Serving customers in over **90** countries worldwide

Annual revenue approximately EUR 3 billion

Our values: Openness, trust and diversity

Tietoevry Create

Impactful, global digital engineering partner enabling customers' competitiveness

Our business

Advanced design, data, Al and software engineering business

.....

Impactful capabilities at scale, working on things that matter to customers, employees and the society

Global engagement model with 10 000 digital engineers in 23 countries

Global scale

Trusted by the world's biggest names

Industry knowledge expertise

World-class digital engineering services

Overview of the Digital Product Passport

The European Union's Green Deal and the EcoDesign for Sustainable Products Regulation (ESPR) promote sustainability by gathering lifecycle information and advancing the circular economy, which emphasizes recycling and reusing over the traditional take-make-waste model.

Definition How it works **Benefits Digital Product Passports is a digital** Product's influenced by DPP need to Product information included in DPP EXAMPLE PRODUCT record & representation of a have a digital record of the product's is becoming increasingly more information product's lifecycle. important in today's global market. General Components Maintenance Materials It provides critical information of OR-code, barcode or other Increased sustainability, രച product's lifecycle such as technology (NFC, RFID) where supply chain traceability & (OX) Product name Example product DPP can be accessed circular economy. ✓ origin & materials Serial number SN 001 production details New business models for DPP consists of static & dynamic supply chain traceability **Product type** Example machine servitization & product data which is recorded environmental impact lifecvcle. throughout product's lifecycle. Production Factory Finland maintenance ✓ end-of-life **Production date** 15.2.2023 Information is reported to EU. Improved product trust & but also made accessible to safety Suppliers Supplier Europe customers via portals etc. Recyclability Partly recyclable

DIGITAL PRODUCT PASSPORT

<

Products affected 2027

Main Categories in ESPR

Characteristics

- E Specification Product and packing attributes
- Identifiers
 Unique identifiers for public authorities
- Compliance Certifications and declarations

Impact

- Sustainability Footprint and environmental influences
- Recyclability Used materials and ease of separation
- 👌 Water use
- 🛈 Waste
- 6 Footprint
- Re-manufacturing
- 이 Energy use
- A Resource use
- Recycled content
- D Substance of concern

Circular ability

- Durability Lifetime and frequency of errors
- O Upgradeability Compatibilities and use of standards
- Repairability Instructions and modular design
- ្រា្ល Reusability Information and IP usage for reuse
- ♥ Recoverability
- Maintenance & refurbishment

DPP Responsibilities & Data Flow

DPP Eco-System approach

Restorers ⊘ Authorities E Specification 2 Sustainability ...) Durability \bigoplus Û Upgradeability ٤ Identifiers Ø Recyclability 💥 Repairability \odot Compliance DPP 🖸 Reusability Product C) Manufacturing Distribution Use End of life Pre-processing Maintenance (Raw) Procurement Recycling **Material Suppliers** R&D Disposal TIER 1,2,3... Supply chain Reuse

An overview of our DPP Data Assessment

DPP Data map

Category	Attribute	Is Dynamic	Oynamisation Level	Source System	Data MaturityLevel	Processing System	Priority	Relevance	Criticality	Comments
Identifiers	Unique Product Identifier	FALSE	Model		Not available		High	TRUE		9
	Global Trade Identification Number (products or parts)	FALSE	Model		Ready to use		High	TRUE		2
	Unique Operator Identifier - Origin	TRUE	Batch		Ready to use		High	TRUE		2
	Unique Operator Identifier - EU	TRUE	Batch		Ready to use		High	TRUE		2
	Unique Facility/dentifier	FALSE	Batch		Ready to use		High	TRUE		6
	TARIC Code	FALSE	Model		Ready to use		High	TRUE		2
	EDRINumber	FALSE	Model		Ready to use		High	TRUE		2
Compliance	Declaration of Conformity	FALSE	Model		Available		Middle	TRUE		4
	Technical Documentation	FALSE	Model		Not available		Nidde	TRUE		6
	Certificates	FALSE	Model		Ready to use		Nidde	TRUE		2
Durability	Guaranteed Lifetime	FALSE	Model		Ready to use		Niddle	TRUE		2
	Technical Lifetime	TRUE	Batch		Available		Nidde	TRUE		6
	Mean Time between Failures	TRUE	Batch		Not available		Low	TRUE		2
	Resistance to Stresses or Aging	FALSE	Model		Not available		Low	TRUE		2
Sustainability	Carbon Footprint	TRUE	Batch		Not available		High	TRUE		G
	Microplastic Release							FALSE		0
	Emissions (Air, Water, Soli)	FALSE	Model		Not available		High	TRUE		2
	Waste generated	FALSE	Model		Available		High	TRUE		6
	Consumables for Use and Maintenance							FALSE		a
	Incorporation of used Components							FALSE		0
	Use of recycled Materials	TRUE	Batch		Not available		Nidde	TRUE		4
	Consumption of Energy	FALSE	Model		Available		Nidde	TRUE		4
	Consumption of Water	FALSE	Model		Not available		Nidde	TRUE		6
	Consumption of other Resources	TRUE	Batch		Available		Low	TRUE		
Reunability	Access to product data	TRUE	Batch		Available		Low	TRUE		a
	Availability of Guarantees for Remanufacturing	TRUE	Batch		Not available		Low	TRUE		2
	Rights for using intellectual Properties	FALSE	Model		Ready to use		Low	TRUE		1
Specification	Weight and Volume (Product)	FALSE	Model		Ready to use		Nidde	TRUE		2
	Weight and Volume (Packaging)	FALSE	Model		Ready to use		Nidde	TRUE		2
	Product-to-PackagingRatio	FALSE	Model		Ready to use		Low	TRUE		1
	Used raw Materials	TRUE	Batch		Available		Nidde	TRUE		6
Repairability	Availability of Spare Parts	FALSE	Model		Ready to use		Niddle	TRUE		2
	Modularity	FALSE	Model		Ready to use		Low	TRUE		1
	Compatibility with commonly available Spare Parts							FALSE		0
	Repair and Maintenance Instructions	FALSE	Model		Ready to use		Niddle	TRUE		2
	Complexity of Repair Process							FALSE		0
	Tools needed for Repair Process							FALSE		o
	Non-destructive Disassembly and Re-assembly							FALSE		0
Recyclability	Usage of hazardous Substances							FALSE		o
	Ease of Separation of Materials	TRUE	Batch		Not available		Low	TRUE		2
	Percentage of recyclable Materials used	TRUE	Batch		Available		High	TRUE		4
	Compatibility with established Recycling-Processes							FALSE		0
	Availability of Recycling Instructions							FALSE		0
	RecyclingLabels							FALSE		0
Upgradeability	Usage of HW and SW Standards	FALSE	Model		Ready to use		Niddle	TRUE		2
	Compatibility for different HW and SW Versions	FALSE	Model		Available		Nidde	TRUE		4

- Identifies product's data needs (categories & attributes)
- Assessment on data character, input, maturity & priority to enable gap analysis
- Helps with calculating criticality of each data attribute to prioritize further development items
- Assesses "full" picture on product's DPP data readiness

Execution of the DPP Data Assessment

Needs

TARGET

Establish DPP data mapping, high-level architecture & roadmap. Create a base for PoC's and further design of the solution.

ACTIONS

- Selection of relevant chapters and attributes
- · Analysis of connected business goals
- · Identification of related source systems and stakeholders
- · Design of data model and data flows
- · Investigation of risks and potential challenges

Sprint

MAIN GOAL: Conduct data assessment and high-level next steps to enable decision making and solutioning of further DPP landscape.

PRESTUDY

- Relevant topics & business goals
- Current situation

DATA ASSESSMENT

- Data accessibility & maturity Systems & IT landscape
- Draft roadmap Next steps & business

potentials

- Filling gaps & draft architecture
- **VERIFICATION & FINALIZATION**
 - Results evaluation & changes
 - Final presentation to key stakeholders
 - · High-level roadmap with identified next steps, decisions, development items & risks

Deliverables

DPP Data Map

Mapping DPP data from different perspectives (e.g. data quality, priority, risks etc.)

Stakeholder Map

Owners of data, solution etc. for further development & governance work

High Level Architecture

Solution architecture in high-level to understand related systems

High Level Roadmap

High level understanding on next steps & timeline

Business Potentials

Connections to business strategy and goals (can be linked to other development areas such as Smart Factory, ESG etc.)

TIETOEVRY DELIVERY TEAM

OUTCOME

- Initial understanding of development needs based on DPP Data Map & architecture
- Next steps to move forward with DPP journey & decisions to be made

CUSTOMER'S TEAM

Project Manager -SPOC for Tietoevry deliverv team

Enterprise architect -Counterparty for customer's IT landscape

Different business owners - Counterparty for different data topics

DPP Solution: top-down view

Data sharing is done through QR-codes in products to show in DPP portal or through APIs & integrations. : tietoevry

3

6

DPP Solution: buttom-up view

ERP = Enterprise Resource Planning MES = Manufacturing Execution System PDM = Product Data Management DMS = Document Management System QCS = Quality Control System SMS = Service Management System CFL = Carbon Factor Library PAR = Public Authorities Register

GOVERNANCE | SECURITY | OPERATING MODEL

Digital business map for Automotive & Manufacturing

CMA = Carbon Management & Accounting QMS = Quality Management System

Why choose Tietoevry?

Technology

Business

Reusability of DPP

Selected References

Airport operations and sustainability analytics

Airport operations analytics to improve sustainability and optimize maintenance processes, real-time analytics, self-service analytics

Reduction of the chemical use in runway de-icing, unexpected weather condition prediction, real-time data supporting planning and field work

ESG Proof-of-Concept for global furniture retailer

Microsoft Sustainability Manager PoC on historical environmental and social data incl. data preparation and aggregation, CO2 calculation and trainings.

Flexible and user-friendly solution, identification of key data issues that need to be solved

Sustainability reporting

ESG reporting platform implementation for circular economy company

Microsoft Sustainability Manager implementation, data identification and availability

Unified CO2 calculation; crossfunctional platform for sustainability reporting, decisionsupporting analytics and value chain collaboration, building CSRD readiness

Life-cycle assessment digitalization pre-study for forest industry company

Data requirements assessment for LCA and traceability, roadmap for data quality and reporting automation

Insight into LCA data quality in source systems, identified possibilities to data integration and source scope expansion, data quality rules

Environmental calculation solution for event industry

Material and carbon footprint calculation and budgeting tool for festivals and large events

Holistic insight into carbon footprint, emissions and material footprint, enabling to consider the environmental effects already in the planning phase of events

Data platforms	Data platforms	ESG technology implementation	Sustainability data assessment	Sustainability data assessment
Analytics and Al	Data collection automation	Sustainability reporting	ESG data architecture	ESG data architecture
Sustainability analytics	ESG technology implementation	Data sharing	Data standards and quality	Data standards and quality

Stefan Novoszel

Automotive & Manufacturing Principal

Stefan.Novoszel@tietoevry.com

+43 664 3906248

Stefan Novoszel | LinkedIn

Thank you

