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How much should you trust
your Al?

A discussion of the trustworthiness of various
Al-assisted methods

Florian Sobieczky, Anna-Christina Glock, Manuela Geil3, Aleksei Koretnikov, Michael RoRbory
— SCCH: Presentation given the HEAL Round Table on 30 Jan 2023
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Agenda

Change Point Detection (CPD)
Feature Extraction and Feature Selection
Explainable Al (XAl)

We discuss the issue of trustworthiness of Al in the context of time series data:
 How to quantify trustworthiness?
« What does it mean in the case of time series?

« What is an Al's user’s trust?



It is possible to produce
pictures which are classified
with high confidence as an
Image of an object which are
completely unrecognizable
by humans|[1].

AlexNet - convolutional neural network, trained on 1.3 Million images:

ILSVRC 2012 ImageNet dataset
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Figure 1. Evolved images that are unrecognizable to humans,
but that state-of-the-art DNNs trained on ImageNet believe with
> 99.6% certainty to be a familiar object. This result highlights
differences between how DNNs and humans recognize objects.
Images are either directly (top) or indirectly (bottom) encoded.

From: [1] Nguyen et. Al.““Deep Neural Networks Are Easily
Fooled: High Confidence Predictions for unrecognize. Images.”
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- " : Figure 1. Evolved images that are unrecognizable to humans,
Image Of an ObJeCt WhICh are but that state-of-the-art DNNs trained on ImageNet believe with
com pletely un recog nizable > 99.6% certainty to be a familiar object. This result highlights
differences between how DNNs and humans recognize objects.
by h umans [1] . Images are either directly (top) or indirectly (bottom) encoded.

AlexNet - convolutional neural network, trained on 1.3 Million images: From: [1] Nguyen et. Al.““Deep Neural Networks Are Easily
ILSVRC 2012 ImageNet dataset Fooled: High Confidence Predictions for unrecognize. Images.”




scch {}

The correct prediction alone
doesn‘t help indicate the
general patters.

Global vs. Local

Model-Agnostic vs. Model-Specifi
Post-Hoc vs. Intrinsic

Salience Maps (GradCam)
PCP /ICE / ALE Plots

Local Surrogates (LIME)

Game Theory (Shapley Values)




Ball Screws: The rotating motion of a cylndrical ? rhunosts(Bearing Side 1-mt-o)
screw is translated into a longitudinal motion[2].
E. g ngh Prec Positioning in CRC machining
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« Heart Rate Monitoring / |

* Precision Machining

) /- ( ;' ‘ 12 : skewness(Ball_Screw Hor mV g )
 Production Data : :

Heart Rate Variability (HRV)

Monitoring beat-to-beat variations
Time-between-two-beats[3]
R-R plots, ECG output, Power Spectra ...

Kaggle — Data[2]: Standard Deviation o om0 m w l
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- Different CPs
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non-harmonic oscillations [4]




Biometrika (1970), 57, 1, p. 1
Printed in Great Britain

Inference about the change-point in a sequence of
random variables

SD2:CUSUM - Target is running mean over previous values
(Threshold: 4.9 Standard Deviations of signal)

By DAVID V. HINKLEY
Imperial College

SUMMARY

Inference is considered about the point in a sequence of random variables at which the
probability distribution changes. In particular, we examine a normal distribution with
changing mean. The asymptotic distribution of the maximum likelihood estimate is
derived and also the asymptotic distribution of the likelihood ratio statistic for testing
hypotheses about the change-point. These asymptotic distributions are compared with
some finite sample empirical distributions.

"TE - f.ﬂn‘f}.l..."_ {f — '[I ...:,T.L
Sequential tests allow quality monitoring (Wald [11]) X, =0H+e (=7+1..,T

‘Structural Breaks’ in Time Series Data

I. Accept H, ii. Accept H; lii. Wait for another Data Point
Quality for CPD: #(False Positives) & Delay until Detection O

typic. measured in Average Run Length (in- & out-of-control) in online case.
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Rule 1. Take samples of fixed size N at regular intervals; assign a score x, to the kth

sample and plot the cumulative score S, = i x;, on a chart:
Take action if S, — min S, = A. (5)

Horpy ==y Hytpy = = g <y = = Uy | ]

n
T pply,) » T pyly,)
k=t O KTt 1K

: )
m paly
k=t 0K

Page’s seminal paper[12] introduced the CUSUM methoc

« Lorden[13] (Asymp.Optim.), Barnard[14] (V-mask), Hinkley[15], [
Basseville&Benveniste[16], Bayesian Online CPD[17]

« Cumulative sum of fluctuations of signal X,, beyond target 6, AU S e b g et 1 v
* ks the ‘allowance’ — only consider exceedance beyond 6,, + k

« ‘Sequential’: Only data up to time n taken into consideration .
and decision about outcome is potentially postponed : .




Successful Offline CPD Methods[5, 6]:

BINSEG[7] 1974 : Divide time-range
recursively into dyadic sub-intervals
PELT[8] 2012: Cost-Function related
partitioning — (precise, running long)
CPOP[9] 2019: Finds Changes in Slope
ECPJ[10] : Calculates discrepancy scores
between data windows

Segments the time-line AMOC[11] 1970: Maximum Likelihood
estimator of CP of only one CP.
BOCPDI[17] 2007: Bayesian online CPD

Uses Batches of Data

Data after proposed CP has
equal eligibility
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Univariate

Default

Cover

AMOC 0.702

BINSEG 0.706
BOCPD 0.636
BOCPDMS 0.633
CPNP 0.535
ECP 0.523
KCPA 0.062
PELT 0.689
PROPHET 0.540
RBOCPDMS  0.629
RFPOP 0.392
SEGNEIGH 0.676
WBS 0.330

ZERO 0.583

0.704
0.744
0.690
0.507
0.607
0.598
0.111
0.710
0.488
0.447
0.499
0.676
0.412
0.669

Best
F1 ‘ Cover

0.746
0.780
0.789
0.744
0.552
0.720
0.626
0.725
0.576

0.414
0.784
0.428
0.579

Observation: Online CPD methods are able to compete with offline ones in terms of precision and recall.

F1

0.799
0.856
0.880
0.620
0.666
0.797
0.683
0.787
0.534

0.531
0.855
0.533
0.662
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Table 1: This table shows the minimal and maximal value of the false-positive

P red iCt & Com pare: an | . : : count (Fpc) and the average run length percent (ArllP) per method and dataset

Method Dataset min Fp max Fp min ArlP  max ArdP

* Prediction Model uses data on “ARIMA CUSUM T 0 ww e

ARIMA CUSUM 2 0 17 18.76 70.75

WlndOW as Input (‘Input Wlndow‘) . ARIMA CUSUM 0 10 111 63.18

ARIMA CUSUM 0 375 14.70 7R.02

Predicts on subsequent window _ | A cusn . A MM e

93 2465 14.51 86.45
Baseline

(‘prediction window’) of width b e o5 067 41

as 035 19.83
Baseline

Comparison of true data with BB oo » 155 60l

0 0.00 82.57
Bayesian

prediction reveals change point JENEEENEE ISR NEEEE S

BN =N E NN nWe

Bayosian 3.99 10,10
Bayesian 5 581 0.10 0.10
sl 0.06 0.63
0 2.52 98.41
5 0.72 64.17
0 0.16 RO.G6
K 0.0 55.68
15 0.00 7033
2 2.52 70.46
0 0.72 I807
0 85 0.06 21.38
CUSUM 5 0 0.13 77.65
0 0.00 78.50
1 2.52 TRAG
0 0.41 92.82
0 0.19 92.03
0 1.94 T7.48
0 0.61 91.63

Bayesian
BFAST
Diaia poinis ) Predictiv moded input () BFAST
" . . ) . ) BFAST
Predichon data points (=) « Prediciiv model prediction {#53)) BFAST
HBEAST
. CUSUM
Predict & Compare[4a] ;] CUSUM

CUSUM

Data="SD2" - Madel = ARIMA(3,1,1)

W =W -

Targ et Qn IS repl aced by f v | , ‘ " | iyl l_.-""\ .‘I‘ ‘ 'I‘",‘.,“;:"”i:‘:l‘l‘h', :,::‘IS;I\("IISI.'M
B LSTM CUSUM

Prediction of Learning model: : ) - LSTM CUSUM

LSTM CUSUM

SN -~

LSTM CUSUM

971 = f(X[O,t—b IE t) =it} AT i L/ N~
: _ : UL o LA From [4a]: It shows that P&C competes well with
CPD in Presence of Trends A L L Hil (e '@ other state-of-the art Online CPD methods I
' (CUSUM[], BOCPDY[], BFASTY).




Assumption: The signal X,, is
Xn=fo+W,+1,

where
fn is the trend,
W, is some stationary noise,

I, is the CP function (step, ramp...).

If under H, prediction of learning model is
close to ground truth with high probability

PlIf Xjo,e-b1) — fFle—psre |> €1 < 8
(e.g., in the PAC-sense [19] €,6 > 0 small)
then P&M will not confuse CP with trend.
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‘Mushroom Picking in Austria assisted by Al’ [20]: ‘“Trust cannot
be a goal in itself’ and ‘... avoid overtrust ....’

Quoted there: ‘Trust in Al is the willingness of users to be
vulnerable to the actions of some automated system to achieve
some goal.’ [20, 21]

Result: If ‘explanations’ are provided for classification result,
the user performs significantly better in deciding correctly
about edibility of mushroom under the assistance of Al.

-> User’s Al — literacy improves Al-assisted User Decisions

Prosabilty

mmmmmm
Prosabilty

aaaaaaaaaa

(a) Plain interface (b) XAl interface

B. Leichtmann, C. Humer, A. Hinterreiter, M. Streit, M. Mara: “Effects of Explainable Artificial Intelligence on

Trust and Human Behavior in a High-Risk Decision Task,”, https://doi.org/10.31219/osf.io/n4w6u
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Assumption: The signal X,, is PAC means ‘Probably Almost Correct’:
Xo=fn+W,+1
n=Jn noon Concept in Statistical Learning Theory
gives lower bound (1-6) for the probability of the predictive
model f: X — Y to be e-correct,

_ ) bounds are uniform over all possible random measures
I,, is the CP function (step, ramp...). (distributions) that may occur in nature.

where
fn is the trend,
W, is some stationary noise,

D. Haussler generalized SLT beyond classification[19].

d is the ‘confidence parameter’: It expresses

« If under H, prediction of learning model is | the probability of the prediction being off by
close to ground truth with high probability | more than e.
P[|f(X[0't_b]) — fre-p+14 1> €] <6 | , Def. Confidence is a bound for the probability
_ ' of f being inaccurate. As such it is a natural
(e.g., in the PAC-sense [19] €,6 > 0 small) candidate for the quantitative measure of the

trustworthiness of a ML model.

then P&M will not confuse CP with trend.
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‘Mushroom Picking in Austria assisted by Al’ [20]: ‘Trust cannot

be a goal in itself’ and ‘... avoid overtrust ....".

Assumption: The signal X,, is
Xn=fon+W,+1I,

where
fn is the trend,

Quoted there: ‘Trust in Al is the willingness of users to be
vulnerable to the actions of some automated system to achieve
W, I1s some stationary noise, S e goal.’ [20, 21]

I, is the CP function (step, ramp...). . Result: If ‘explanations’ are provided for classification result,
the user performs significantly better in deciding correctly
about edibility of mushroom under the assistance of Al.

-> User’s Al — literacy improves Al-assisted User Decisions

* Ifunder H, prediction of learning model is Def.: If a predictive model‘s f(-) : Rt - R? user estimates the

close to ground truth with high probability confidence parameter § = §(t, €) at time t for a given
p[|f(X[0 t=b1) — flt-b+11] > €] <8 accuracy parameter e, then this expresses the user's trust in it.

(e.9., Inthe PAC-sense [19] ¢,6 > 0 small)  _> pAC = Probably AlmostiCarrect — Learning theory
then P&M will not confuse CP with trend. by Valiant, Vapnik, Pollard, Haussler19].




scch {}

‘Mushroom Picking in Austria assisted by Al’ [20]: ‘“Trust cannot

Assumption: The signal X,, is
be a goal in itself’ and ‘... avoid overtrust ....’

Xy = fo+ W, +1,

Whe.re Quoted there: ‘Trust in Al is the willingness of users to be

fn 1s the trend, vulnerable to the actions of some automated system to achieve
W, I1s some stationary noise, S o goal.’ [20, 21]

I, is the CP function (step, ramp...). . Result: If ‘explanations’ are provided for classification result,
the user performs significantly better in deciding correctly
about edibility of mushroom under the assistance of Al.

-> User’s Al — literacy improves Al-assisted User Decisions

« If under H, prediction of learning model is « Al = Artificial Inteliicencé
close to ground truth with high probability , _
PIf (Xi04-51) — Fie—psre] |> €] < 8 Ul = User’s Intelligence

(e.g., in the PAC-sense [19] €, 8 > 0 small) * User's trust: § (US -estimated §)

then P&M will not confuse CP with trend. * ->Detf.: Trust := Estimated-Confidence




* F isthe finite H

« |[fl<MforalfeF

» Under this condition
R < 6.

Al = Artificial Intelligence
Ul = User’s Intelligence
User’s trust: §, user-estimated

-> Def.: Trust = Confidence

D. Haussler's Learning generalisation of the PAC model [19] to
regression problems involves:

a hypothesis space H = {f: X - Y}
the usual risk function r = E[I(Y, f (X))] (empirical & ideal)
a regret function L(P, f)

a learning method A: X™ x Y™ — f

a “big L“-risk (expected regret) R = [ L(P, A(X,Y))dP™(X,Y)
where the expectation is taken over the m-dim. training set.
E.Q..L(P,A) =1+, (1) =D R =P[|Fr —1*| > €]

Learning bounds limit the minimum training set size m.
(these are uniform bounds of the expected regret over all P.)




* F isthe finite H

« |[fl<MforalfeF

» Under this condition
R < 6.

Al = Artificial Intelligence
Ul = User’s Intelligence
User’s trust: §, user-estimated

-> Def.: Trust = Confidence

D. Haussler's Learning generalisation of the PAC model [19] to
regression problems involves:

a hypothesis space H = {f: X - Y}
the usual risk function r = E[I(Y, f (X))] (empirical & ideal)
a regret function L(P, f)

a learning method A: X™ x Y™ - f

a “big L“-risk (expected regret) R = [ L(P, A(X,Y))dP™(X,Y)
where the expectation is taken over the m-dim. training set.
E.Q..L(P,A) =1+, (1) =D R =P[|Fr —1*| > €]

R < §: High trust in a learning method is small expected regret.



* F isthe finite H

 |fl<Mforall f €F

» Under this condition
R < 6.

Al = Artificial Intelligence
Ul = User’s Intelligence
User’s trust: §, user-estimated

-> Def.: Trust = Confidence
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Haussler's Learning generalisation of the PAC model [19] to

regression problems (also: density estimation and parameter

estimation) involves

* ahypothesis space H = {h: X - Y}

« the usual risk function r = E[L(Y, h(X))] (empirical & ideal)

« aregret function L(P, h) which is small when the empirical
risk is close to the ideal risk

a “big L“-risk (expected regret) R = [ L(P, A(X,Y))dP™(X,Y)
where the expectation is taken over the m-dim. training set.
./

[

Learning bounds limit the minimum training set size m.
(these are uniform bounds of the expected regret over all P.)

SRR

Conclusion: Trust in a learning method is small expected regret.
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Our questions:

 How to quantify trustworthiness? -> Confidenece

« What does it mean in the case of time series?~_-> Uniform Bounds of probability to be €orrect

« What is an Al’'s user’s trust? -> The estimate of the corresponding Confidence

« Trustworthiness is confidence § (in dependence of accuracy e).

« Trust is estimated confidence §.

« The statistical learning theory provides rigorous terms for defining o
trust in learning methods to be estimated bound of expected
regret R(P).
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Confidence estimates are
determined by the DNN —
Human estimate differs!

5. Conclusion

We have demonstrated that discriminative DNN models
are easily fooled in that they classify many unrecognizable
images with near-certainty as members of a recognizable
class. Two different ways of encoding evolutionary algo-
rithms produce two qualitatively different types of unrec-
ognizable “fooling images”, and gradient ascent produces
a third. That DNNs see these objects as near-perfect ex- feight car Mm ATicAn. grey
amples of recognizable images sheds light on remaining Figure 1. Evolved images that are unrecognizable to humans,
differences between the way DNNs and humans recognize but that state-of-the-art DNNs trained on ImageNet believe with
objects, raising questions about the true generalization ca- > 99.6% certainty to be a familiar object. This result highlights
pabilities of DNNs and the potential for costly exploits of differences between how DNNs and humans recognize objects.
solutions that use DNNs. Images are either directly (fop) or indirectly (bottom) encoded.
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AlexNet - convolutional neural network, trained on 1.3 Million images: From: [1] Nguyen et. Al.“*Deep Neural Networks Are Easily
ILSVRC 2012 ImageNet dataset Fooled: High Confidence Predictions for unrecognize. Images.”
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